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Proposals are made for modelling the pressure-containing correlations which appear 
in the transport equations for Reynolds stress and heat flux in a simple way which 
accounts for gravitational effects and the modification of the fluctuating pressure 
field by the presence of a wall. The predicted changes in structure are shown to agree 
with Young’s (1  975) measurements in a free stratified shear flow and with the Kansas 
data on the atmospheric surface layer. 

1. Introduction 
The effects of the earth’s gravitational field on turbulence have received much 

attention both from those interested in the atmospheric boundary layer and from 
those concerned with the dispersal of jets or plumes into the environment. In  both 
types of flow gravitational influences may be profound. It does not seem to have been 
fully recognized, however, that the esfects are fundamentally different in the two types 
of $ow, particularly under stable conditions. The differences are illustrated in table 1, 
which gives the variation of three dimensionless turbulence parameters under &able 
stratification. The two flows compared are the lower region of the atmospheric boun- 
dary layer and a horizontal, nominally homogeneous free shear flow in which a linear 
vertical profile of mean velocity and temperature has been established. The experi- 
mental data on the atmospheric surface layer are from the Kansas measurements 
(Haugen, Kaimal & Bradley 1971; Businger et al. 1971; Wyngaard, Cot6 & Izumi 
1971) while the entries for the free shear flow relate to the measurements of Webster 
(1964) and Young (1975). Both flows are close to local equilibrium, energy generation 
by the combined effects of mean shear and buoyancy being approximately balanced 
by viscous dissipation. For the free shear flow, the variations brought about by an 
increasingly stable stratification are, for the most part, what could be inferred by 
considering the action of buoyant generation in the conservation equations for the 
turbulent stresses and heat fluxes. For example, in the equation f o r z ,  the mean-square 
vertical velocity fluctuation, there is a damping due to buoyancy equal to 2Rr times 
the generation rate of kinetic energy due to shear, R, denoting the flux Richardson 
number. Buoyant generation is absent, however, from the equation for streamwise 
fluctuations. It is to be expected, therefore, that (ug/ui)i would progressively decrease 
in an increasingly stable stratification. Precisely parallel remarks may be made about 

- -  
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Changes produced by increasing R, from 0 to 0.2 

Turbulence Atmospheric boundary layer 
parameter Homogeneous free shear flow (Kansas experiments) 

Decreases by about 30 yo 
Decreases by about 70 Yo 

Decreases by about 50 Yo 

Increases by about 20 yo 
Increases rapidly by 50 yo 

Initially decreases by 10 yo 
then levels out 

then rises slowly 

I. Effects of stable stratification on atniospheric 
boundary layer and free shear flow. 

-- 
the behaviour of the ratio u3 y l u ,  y of the vertical to the horizontal heat flux. We 
note, however, that this 'natural' direction of variation is not observed in the atmo- 
spheric boundary layer. The ratio (ui/uf)4 actually appears to  rise with increasing 
stability (see Arya's (1972) representation of the Kansas data, figure l a )  while the 
heat-flux ratio first falls sharply and then levels out to a nearly uniform value. As 
seen from table 1, a strikingly dissimilar variation is also observed in the ratio K,/K,, 
of the turbulent diffusivities of heat and momentum. 

Of course, measurements in buoyancy-affected turbulence are not easy to make and 
the question must arise as to whether some of the reported experimental trends are 
anomalous. A single difference in trend between the free shear flow and the boundary 
layer could perhaps be attributed to measurement error. The behaviour summarized 
in table 1 ,  however, is basically and consistently different for the two situations. One 
is therefore led to conclude that' the buoyant effects in the two flows are indeed 
fundament,ally different. 

We can unambiguously identify the cause of the differing behaviour if we accept 
that, in both kinds of flow, the fine-scale motion is isotropic and that conditions are 
sufficiently close to  local equilibrium for transport effects to have only a minor 
influence. I n  these circumstances the only correlations in the conservation equations 
for t,he Reynolds-stress and heat-flux components are those containing pressure 
fluctuations. The differences between the two classes of flow are thus due to the direct 
and indirect influences of the ground on these correlations. 

Many workers, beginning with Monin (1 965), have used the transport equations 
for the Reynolds stresses and heat fluxes as the starting point for modelling buoyant 
effects on turbulence. This level of closure is a particularly attractive one for modelling 
the effects of gravity because the terms representing both the direct and the indirect 
effects of the force field on the Reynolds stresses and heat fluxes appear naturally 
in the governing equations. There is thus the hope that a closure in which the empirical 
inputs are chosen by reference to non-buoyant flows may be extrapolated to predict 
the effects of varying degrees of stratification on the shear Aow. This has been the 
underlying rationale of all second-order closures for buoyant flow from Monin (1 965) 
and Ellison (1966, unpublished note cited by Yaglom 1969) onwards. The approach 
has been a t  least partly successful. Indeed, the present work indicates that such short- 
comings as earlier models did possess are due mainly to an inadequate modelling of 
neutyal shear flows rather than to the extrapolation principle itself. 

- -  
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In  order to close the exact Reynolds-stress and heat-flux equations, approximations 
are needed for the correlations between the pressure and strain fluctuations (called 
‘the pressure-strain correlations ’, &) in the Reynolds-stress equation and the 
corresponding pressure-temperature-gradient correlations q5iy in the heat-flux 
equation. Rotta’s ( 1951) pioneering paper on closing the Reynolds-stress equations 
in non-buoyant flows had shown that there were two agencies contributing to  q5ij: 
one due to  purely turbulent interactions and the other arising from shear in the mean 
velocity. Most subsequent proposals neglected the influence of the mean strain, 
however. Here we may cite the contributions of Ellison (1966; see Yaglom 1969), 
Donaldson and his colleagues (Donaldson, Sullivan & Rosenbaum 1972; Lewellen 
1975) and the earlier work by Lumley and his associates (Lumley 1972; Wyngaard 
& Cot6 1974). Mellor (1973) included a primitive model of #ij but neglected entirely 
mean-strain effects on q5iy. The resultant model reproduced some of the features of 
the atmospheric layer but the normal-stress ratios displayed an opposite variation 
from measurements (predictions of the ratios of heat fluxes and eddy diffusivities were 
not shown). More recently Launder ( 1 9 7 5 4  has shown that, in addition to mean-strain 
influences, there are important buoyant contributions to  q5ij  and q5iy; models of these 
processes, exact in the case of isotropic turbulence, have been reported by Launder 
(1 975 b )  and Lumley (1 975). 

Nearly all the proposals mentioned above were made without regard to the presence 
of a wall. Only those of Launder (1975a, b) and Lumley (1975) were specifically limited 
to free shear flows. Although Monin (1 965) recognized that the ground itself exerted 
an effect on q5+i and QiY, it was not until the rather neglected contribution of Shir 
(1 973) that  a physically consistent wall-effect contribution to  q5ij appeared. Shir, 
extending the suggestions of Daly & Harlow (1970), supposed that the wall correction 
was needed only for the ‘turbulence ’ part of gij. Irwin’s (1 973) analysis of the exact 
pressure-fluctuation equation (for non-buoyant flows) suggested, however, that both 
the mean-strain and the turbulence contribution would be affected yet, curiously, 
only the former was included in his closure. Launder, Reece & Rodi (1975) included 
near-wall corrections for both the mean-strain and the turbulence part which allowed 
the prediction of several types of bcundary-layer and free shear flows, That work 
and that of Irwin & Arnot Smith (1975) have shown that the inclusion of the near-wall 
effect on q5ij is crucial to predicting the great sensitivity of boundary layers to wall 
curvature. In  a rather different connexion Reece (1977) has demonstrated that the 
introduction of a near-wall correction greatly improves the prediction of turbulence- 
induced secondary flow in square-sectioned ducts. Thus, in summary, several studies 
in isothermal shear flows have found that the recognition of the wall’s influence on 
Qi j  helps to explain a number of hitherto unresolved features of wall shear flows. 

I n  most of the above work the strength of the wall effect on q5ii was assumed to 
depend on the ratio l /xn of a turbulence length scale t o  the distance from the wall. 
Where 1 increases linearly with x, the strength of the term was thus uniform; as the 
length scale levelled off in the outer part of the shear flow, wall influences diminished. 

The present paper has sprung from the realization that the use of a wall correction 
similar in form to  that already used in non-buoyant flows might account for the 
paradoxical behaviour indicated in table 1. Experiments by several workers (see, for 
example, the monograph by Turner 1973) have shown that in the atmospheric 
boundary layer the ratio I/xn is extremely sensitive to  the strength of the stratification. 
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As the Richardson number progressively increases from zero l / x ,  falls dramatically; 
this in turn (so our reasoning went) will reduce the significance of the near-wall 
correction. Now, the effects of a wall on non-buoyant flow are, in many respects, 
similar to those of a stable gravitational field on a free shear flow (diminishing the 
level of vertical fluctuations, reducing the ratio of shear stress to  turbulence energy, 
etc.). In  the non-buoyant free shear ~ O W  the normal-stress ratio ug/u: has a value of 
approximately 0.5 while a typical value in the uniform-stress layer of a wall flow 
would be about 0.2. The effects of stable stratification on the wall flow are twofold: 
direct damping of the vertical fluctuations is combined with a progressive weakening 
of the wall effect as stability is increased. It is our contention that in weakly stratified 
flow the second effect predominates, so that ug/u; increases with increasing stability 
towards the corresponding free-flow value. In  strongly stable flow the characteristic 
eddy size is determined entirely by the stability and is quite independent of distance 
from the wall. The turbulence behaves as in a free flow and any further increase in 
stability reduces the levels o f 3  and the shear stress until, at a critical flux Richardson 
number o f  around 0.25, the turbulence disappears and is replaced by gravity waves. 
The behaviour indicated in table 1 and, to anticipate, in figure 1 (a)  may plausibly 
be attributed to the diminishing inff uence of wall damping as stability is increased. 

In  the present contribution we have attempted to test the correctness of this basic 
conjecture. The turbulence model adopted is, in its main features, the same as that 
developed in our earlier work on free shear flows (Launder 1975a; Gibson & Launder 
1976). To this we have added a wall correction obtained by generalizing Shir’s (1973) 
proposal. The predicted results do indeed show the strongly different beha,viour of 
stratification in wall-affected and free shear flows. Most of the effects shown in table 1 
are correctly predicted by the model though the sharp fall in the ratio of horizontal 
to vertical heat flux for weakly stable flow is not recovered. 

The critical flux Richardson number at which the turbulence collapses is predicted 
as 0.25 but the calculations do not include any contribution from the wave motion. 
However, the collapse is so rapid that contributions from this source may reasonably 
be assumed to be insignificant up to Richardson numbers only just below the critical 
value. 

-- 

- -  

2. The Reynolds-stress and heat-flux equations 
For a high Reynolds number (locally isotropic) shear flow in local equilibrium, the 

exact equations governing the level of the Reynolds stresses and heat fluxes may be 
written as 

( 1 )  

(2) 

The quantities Pij, G,,, piy and Giy represent respectively t,he production rates of 
ui u, and uiy attributable to mean shear and buoyancy: 

Pij + Gij - Q8ij c + $ij = 0, 
- 

- U i  uk ar/&, fey + Gt, + $,jy = 0. 

- 
- - 

pij - {ui uk aq/axk + ui uk aq’/axk}, (3) 

Gij - (a lp )  (gj ui y + gi uj 71, (4) 

ey -ukyaq/axk, ( 5 )  

G ~ ,  - (agi/r)  y2. (6) 

- -  
- 

- 
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Upper and lower case u ’ s  and y’s denote mean and fluctuating velocities and tem- 
peratures respectively, g is the gravitational acceleration vector, a: the dimensionless 
volumetric-expansion coefficient of the fluid and E stands for the dissipation rate of 
turbulence kinetic energy. f- 

The symbols & and $i, denote respectively the pressure-strain and pressure 
temperature-gradient correlations: 

Apart from the mean-square temperature variance appearing in Giy, these pressure- 
containing correlations are the only unknowns in (1) and (2). Their approximation 
is thus crucial to the predicted characteristics of the stresses and heat fluxes in a 
gravitational field. 

The pressure fluctuations in ( 7 )  are governed by the Poisson equation obtained by 
taking the divergence of t.he equation for the fluctuating velocity ui: 

From (8) i t  is seen that pressure fluctuations arise from three agencies: turbulence 
interactions, mean-strain effects and density fluctuations in the gravitational term. 
These contributions produce corresponding effects on qbij and 4iy.  Moreover, for the 
class of flows under study here, the presence of the ground modifies the fluctuating 
pressure field. As we have noted in S 1, i t  is the ground effect which is responsible 
for the qualitatively different effects of buoyancy observed in the earth’s boundary 
layer and in free shear flows. 

To start with consider the case of turbulence sufficiently remote from a bounding 
wall for the wall’s influence to be negligible. It appears consistent with observations 
to assume that the action of the fluctuating pressure field will be to make the turbulent 
velocity and temperature fields less directionally biased, more isotropic. We note 
further, from ( 7 ) ,  that any model of &. must be a second-rank symmetric tensor with 
zero trace. Following Launder (1975a)  we adopt the following simple linear model 
which possesses the directional-blurring tendency noted above: 

with 

where P and G are the production rates of turbulence energy due to the actions of 
mean shear and buoyancy: - 

P =_ - ~ ~ ~ ~ a u , / a x , ,  (12) 

Equations ( 9 ) ,  (10) and (1 1 )  correspond to the turbulence, mean-strain and buoyan 
contributions to the pressure field in (8). In fact, Lumley (1975) and Launder (19’753) 

t Since we here consider only the local-equilibrium model E = $(Pic+ Gjj), 
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have shown independently that for isotropic turbulence C, must equal 0.3 while C2 
is 0-6. Launder ( 1 9 7 5 ~ )  has found, however, that the effect of stratification on the 
nearly homogeneous free shear layer is predicted better by taking both C3 and C2 
equal to about 0.6. The present computations suggest that the Iatter d u e s  are close 
to the optimum ones in near-wall flows too. 

In  a simple shear flow the proximity of a rigid wall modifies the pressure field, thus 
impeding the transfer of energy from the streamwise direction to that norma1 to the 
wall. The relative magnitude of the shear stress is also diminished. By introducing the 
unit vector n normal to the surface, Shir (1973) advanced the following near-wall 
addition to gii, producing generally the desired behaviour: 

- - - 
#::j, = C ; ( E / ~ )  (uk urn nk n, ifii - -@k ui nk nj - @k uj nk ni) f (l/ni ri), (14) 

where r is the position vector and I is a characteristic turbulence length scale.The factor 
Q is needed to render the tensor traceless. While Shir used (10) to approximate &, 
he assumed that there was no corresponding modification due to the ground, a view 
which seems inconsistent with (8). Here we adopt the idea expressed by (14) and 
apply it also to the other components of q5ij: 

#ii, 2 = cL(#knz, 2 nknm & i j - ; # < k ,  2nknj  -%#jk ,  Z n k n i ) f  (15) 

#ij ,3 = C ; ( # k m , 3 n k n m 6 i j - ~ # i k , 3 n k n j - ~ 6 i k , 3 n k n i ) f  (J/niri)* (16) 

The corresponding terms in the heat-flux equation are modelled in a precisely 
parallel way. Following Monin (1965), the first part of the pressure-temperature- 
gradient correlation is written as 

(17 )  

Since, in a locally isotropic thermal field,direct molecular destruction of ui y isnegligible, 
it is y5iy,l which prevents the heat-flux correlations, generated by mean temperature 
gradients, from growing indefinitely. As in our earlier work, we assume that mean- 
strain and gravitational effects on the pressure field will act to diminish in magnitude 
the direct generation. Thus 

~ 

4. ay, 1 = -Cly(€/k)uiy.  
- 

# i y , 2  = - c 2 y 4 . y 9  6. ay,3 = -CZYGiy. (181, (19) 

$&,I = - C ; Y ( ~ / ~ )  ukyninkf(z/niri) ,  (20) 

#& , 2 = c& c2y 'ky ni n k f ( z / n i  ri) 

6 ; y , 3  = c ; y c 3 y G k y n i n k f ( E / n i r i ) .  (22) 

The wall-correction terms for these three processes are assumed to take a form corre- 
sponding to  ( 1 a)-( 16) : - 

(21) 

We note that the near-wall function appearing in (20)-(22) is assumed to be the same 
as that in (14)-( IS), or rather that the argument of the functions is the same in each 
case. A different length-scale variation could have been adopted for the stress and 
heat-flux field but there seemed insufficient experimental evidence to warrant such an 
elaboration. It is convenient to choose f such that its value is unity close to the wall, 
where, in neutral flow, the length scale increases linearly with height; this choice 
essenttially fixes the coefficients C;, etc. of the near-wall corrections. At this stage, 
apart from the choice of empirical coefficients and the wall-damping function, (1) and 
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(2) are closed except for the approximation of the mean-square temperature variance 
appearing in Giy [see (6)l. In  local equilibrium the exact transport equation for 7 
reduces to  

- 

from which Fis absent. The temperature variance may be re-introduced by way of 
the dimensionless quantity 

which represents the ratio of the characteristic decay times for the turbulent tem- 
perature and velocity fields. In  decaying grid turbulence the equilibrium level of R 
seems to be well established as unity (Newman, Launder & Lumley 1978; Warhaft 
& Lumley 1978). In  shear flows close to local equilibrium there is some evidence that 
a smaller value of R is appropriate. A value of about 0-5 is suggested by Dekeyser, 
Beguier & Launder (1976) based on a re-analysis of various shear-flox+ studies at the 
IMST, Marseille, while the present writers have used values of 0.7 and 0.8 in the 
prediction of buoyant free shear flows. On inserting (24) into (23) we obtain 

- 
7 2  = - cy(k/E) G a r l a x , ,  

where the coefficient Cy has been introduced in place of 2R. 

3. Horizontal boundary-layer flow 
Substitution of the above modelling assumptions into (1) and (2) and application 

of the boundary-layer approximations produces the following equation set for hori- 
zontal flow (the streamwise direction is taken as x1 and x3 is vertically upwards from 
the horizontal plane surface) : 

where R, is the flux Richardson number: 

R, = - G/P.  (32) 

In  arriving a t  the above forms use has been made of the fact that the total generation 
rate of turbulence energy equals the dissipation rate, i.e. P + G = E .  

17 F L M  86 
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Denoting the length-scale function f (l/x3) by f for brevity, the coefficients $ can 
be written in terms of the model constants as follows: 

$5, = (3 - cz - 2c3 + 2ci czf f 4cic3 f )/3Cl, (39) 

$ = (1 - Cz + 1-5CkC2 f )/(C1+ 1*5C;f), (40) 

$5’ = (l-C3+1‘5CjC3f)/(C1+1’5CIf). (41) 

$y = c;;, $I = (1 -c2y)$y, (4% (43) 

$,1 = [4y+c;,fl-1, +;1 = (1-C3y+GyC3y,my1. (44)s (45) 

For the two heat-flux equations (30) and (31), the coefficients are 

We note that, owing to the form of (20)-(22), wall effects are absent from the equation 
for the horizontal heat flux and appear only in the equation for u3 y through the part 
of the pressure correlation involving buoyancy. As a consequence the constant C i y  
in (21) disappears from the boundazy-layer form of the model. 

Equations (26)-(28) are straightforward expressions for the dimensionless normal 
stresses q / k  in terms of the local flux Richardson number. Substitution for ui y from 
(30) in (29) yields a gradient-diffusion type of expression for the shear.stress. The 
equivalent expression for the vertical heat flux is obtained directly by rearrangement 
of (31). Thus 

-F3 = P(k/6)zaU1/ax3, (46) 

- 

- 

- 
where 

and B is a dimensionless buoyancy parameter defined by 

k2 agar B=--- - 
€2 r ax; 

It is convenient to denote the ratio K,,/K, of the turbulent exchange coefficients by 
crt, the turbulent Prandtl number, which is obtained from (48) and (49) as 
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A second expression relating B to a, is found by combining the definitions of B 
and Rf and eliminating the velocity gradient by means of the definition 

After some algebra there results 

in which 

Combination of (50) and (51) then produces an explicit expression for a,: 

4-4’4jA 
at = +yl-(#;lQy-4‘4y)~a 

Other useful quantities are then readily obtained as follows: 

(55) 

4. The choice of model constants 
The proposed model for horizontal boundary layers contains twelve empirical 

coefficients to be chosen by reference to experimental data. Five of these are deter- 
mined from measurements of unstratified free shear flows, two relate specifically to 
buoyant effects while the remaining five are introduced in modelling the wall- 
suppression factors. The ‘unstratified ’ coefficients have been selected from laboratory 
experiments in flows where buoyant effects are entirely negligible. In  some respects 
these data do not correspond precisely to those measured in the atmospheric boundary 
layer under neutral conditions; we shall discuss such differences later. 

Table 2 gives the model constants used and some values of key turbulence quantities 
predicted for neutral free and wall flows in local equilibrium. Some small changes 
from our earlier proposals (Gibson & Launder 1976) may be noted. C2 now takes the 
value 0.6 (instead of 0.55) required to satisfy (10) for isotropic turbulence and C, 
takes the lower value 1.8 (instead of 2.2) to improve slightly the predicted level of 
normal stresses in free shear flows. (This value is also in close agreement with that 
predicted by Herring (1 974) from a direct-interaction calculation.) 
Cl, and C&, are evaluated by reference to turbulent Prandtl number values typical 

of free and wall flow. For neutral conditions (R, = 0) (55) reduces to 

17-2 
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Basis for determination (neutral flow) 

Homogeneous Near-wall 
Model constant Value Quantity shear layer turbulence 

z / k  0.96 1.10 

iii } { s / k  0.52 0.65 

c; u:/k 0.52 0.25 
G 0.3 u,u,lk - 0.34 - 0.26 

CI 
c* 

0.5 
0.33 
0.5 
0.33 
0 
0 
1.6 

bt 0.67 0.92 

Computer studies 
Isotropic turbulence 
No information 
No information 
See discussion in text 

G I G  - 1.3 - 2.1 

TABLE 2. Model constants and the basis for their determination. 

where the function f takes the values unity and zero in wall and free shear flows 
respectively. 

Substit'ution of Cly = 3.0 and CiY = 0.5 together with the other constants already 
specified produces values of ctto of 0.67 and 0.92 for free and wall flow respectively. 
The quantity C,, which as we have noted is twice the time-scale ratio for the decay 
of temperature and velocity fluctuations, retains the value 1.6 proposed in Launder 
( 1 9 7 5 ~ )  and the four remaining constants C3, C;, CS, and C;y appear only for stratified 
flow. 

For isotropic turbulence the quantities C3 and C3y (the coefficients in the buoyant 
parts of q5ij and q5iy) take the values 0.3 and 4 respectively (Launder 19753, 1976). 
It TTW, our original intention to retain both these values in the present work. Distinctly 
better agreement was achieved, however, by choosing a higher value for C3; this 
suggests that (despite the contrary indications from analysis of isotropic turbulence) 
in a shear flow the pressure fluctuations deflect or destroy buoyant generation about 
as effect,ively as they do shear generation. (This parity had in fact been assumed in our 
earlier work.) In  tune with the above conclusion we have adopted the same value for 
CZy as for C3y. The quantities C; and CAY appear to exercise little influence in the pre- 
diction of stratified wall flows and, in the absence of definite information, they have 
been set to zero. 

5. Surface-layer similarity and the Iength-scale function 
According to the Monin-Oboukhov similarity hypothesis the turbulence structure 

in the uniform-stress layer close to the ground is determined solely by the quantities 
- u1 u3, - ug y ,  ag/r  and xs, which are combined in the single parameter 
- -  
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where K is the von K&rm&n constant, u, the 'friction velocity' [ = (-u,u,)J] and L 
the Monin-Oboukhov length scale defined by this equation. The hypothesis implies 
that, for flow at high Reynolds numbers in the surface layer, appropriately normalized 
turbulence correlations depend only on 5. 

In the neutral surface layer L+co, so that characteristic eddy sizes scale with x,, 1 
varies linearly with height and the length-scale function f is unity. This is the common 
mixing-length assumption for wall flow which has formed the basis of many successful 
prediction methods. 

For conditions of strong stable stratification the eddy size is determined solely by 
the stability and not by distance from the surface. Clearly in this case the length-scale 
function f tends to zero as in a free flow. The other asymptotic limit, represented by 
large negative Richardson numbers, is a condition of free convection with no pre- 
dominant mean flow direction. The eddy sizes scale with x, a n d f  is theoretically 
unity. One important result of free-convection scaling may be noted here: 

- 
q u r "  cc ( - 6)$. (61 

The dependence of the length scale on stability between the asymptotic limits may 
be deduced from measurements of the mean velocity profile in the surface layer. If we 
define a scale typical of the energy-containing motion by 

the condition of local equilibrium yields t.he following expression for the length-scale 
function : 

f = l / K x ,  = l / {$Jm( l -  BJ)}, (63) 

where #m is the dimensionless mean shear defined by 

Numerous empirical expressions for q5m have been quoted in the literature. For 
stably Stratified flow there appears to be general agreement that the data. may be 
fitted by a function of the form 

#m = ( 1  +PIC) = ( 1  -P&)-l. (65 ) 

Values of PI ranging from 7 to 10 are reported from wind-tunnel measurements by 
Arya & Plate (1 969) while the atmospheric turbulence data reviewed by Busch (1972) 
suggested values ranging from 4.7 to 7.0. We have chosen PI = 5.5 to specify f in the 
present calculations. This somewhat arbitrary choice in the middle of the range 
quoted by Busch was made to produce optimum agreement with the stable-flow data 
although, in fact, the model predictions are not very sensitive to quite large changes 
in this quantity; values of 4.7 and 7-0 still produce acceptable results. 

For unstable conditions it is expected that the eddy sizes scale approximately with 
xg and that the function f does not depart greatly from unity. We have used the 
KEYPS formula (Panofsky 1963): 



602 M .  M .  Gibson and B. E.  Launder 

0.6 

I I 1 1 I I I 
0 0.1 0.2 0.3 0.4 0.5 0.6 

Ri 

-- 
FIGURE 1. (a) Dependence of (u:/u;)~ on flux Richardson number in stably stratified flow. 
Atmospheric-boundary-layer data from Haugen el al. (1971). A, za = 5.7m; 0, xa = 11.4m; 0, 
zll = 22.6 m. Predictions: ---, wall flow; - --, free shear flow. ( b )  Dependence of the normal-stress 
ratio on Richardson number in a stably stratified free shear flow. Data from Young (1975). 
(c)  Predicted dependence of the normal-stress ratio on Richardson number in unstably stratified 
flow. -, wall flow; -.---, free shear flow ( P +  Q = E ) ;  ---, free shear flow ( P +  Q = 0.86). 
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= 14 in accord with the data reviewed by Busch (1972). Combination of with 
(65) and (66) with (63) produces the following expressions for f : 

It should be noted that the assumptions of this section are not an integral 
feature of the turbulence model. In  a complete second-order closure the length- 
scale variation could, for example, be calculated by solving a transport equation 
for the energy dissipation rate 8. A well-tested form for this equation in 
stratified Aow, however, does not yet seem to be available. A directly prescribed 
length-scale equation seemed, therefore, the best way of testing the basic conjectures 
of the present paper. 

6. Presentation and discussion of results 
In  this section we compare the predicted and measured influence of strati- 

fication on the atmospheric boundary layer and nearly homogeneous free shear 
flow. The experimental sources are the Kansas measurements in the lower 25m 
of the atmospheric boundary layer and Young’s (1975) study of free shear flow, 
which was undertaken in an improved version of Webster’s (1964) tunnel. The 
latter results are similar in many respects to Webster’s original values though they 
display better internal consistency. Our main attention is given to the atmospheric 
boundary layer because the free shear layer has been specifically studied in an 
earlier paper (Launder 1 9 7 5 ~ ) .  Nevertheless comparisons for the free shear flow are 
included to bring out the dramatically different behaviour exhibited by the two types 
of flow. 

Figures 1 (a)-(c) show some of the most significant differences between the near-wall 
and the free flow. Under stable conditions the predicted level of (ug/u;)3 falls smoothly 
for the free shear Iayer and rises for the boundary layer as Rf is increased until, for a 
flux Richardson number of about 0.18, the relative stress levels in the two flows are 
equal. The reason is that the function f given by (67a) has then fallen to zero so no 
wall effect is felt. This is what is indicated in figure 1 (a) .  The experimental data in this 
figure are those assembled by Arya (1972) from the Kansas measurements which 
were obtained at  heights of 5.7, 11.4 and 22.6m. Although the experimental points 
are scattered the definite impression is conveyed that the ratio of vertical to stream- 
wise velocity fluctuations does indeed rise in a similar fashion to the predicted variation, 
though the measured values lie about 15 yo higher than the calculated ones. We have 
not included in this figure Arya’s own data obtained in the stratified wind tunnel at 
Colorado State University. These, in fact, show two patterns of variation, (ui/u;)8 
increasing very steeply with Rf for flux Richardson numbers below 0.02 while displaying 
a, behaviour like the atmospheric data over the range 0.025 < Rf < 0.06. If they had 
been included in figure l(a) the impression that Arya’s measurements would have 
given to the figure as a whole would have been that of a large amount of scatter with 

-- 

-- 
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no ordered dependence on R, .-t It is probably for this reason that no one has hitherto 
remarked on the ‘unnatural ’ behaviour displayed by the atmospheric data. 

The atmospheric measurements do perhaps indicate a somewhat steeper rise of 
(u:/u$ with Richardson number than do the predictions and a maximum level 
that is reached at a lower value of Rf. Both these results suggest that the chosen value 
of may be 20% too small. However, such details do not affect the main result to 
emerge: namely, that inserting the experimentally observed dependence of length 
scale on buoyancy into a wdl-effect model of the pressnre-strain correlation -- (devised 
for non-stratified flows) gives broadly the correct dependence of (u:/u?)i on R,. This 
result, which is in marked contrast with the behaviour predicted by all existing 
closures known to the authors, provides strong support for the main concepts of the 
present model. 

Predictions for a free shear flow in local equilibrium are made by substituting 
f = 0 in (33)-(45). They are compared with Young’s (1975) measurements in figure 
1 (b). Note that to avoid errors associated with reprocessing the data we have retained 
from the original report the normal-stress ratio (rather than its square root) and, in 
place of the flux Richardson number, the gradient Richardson number defined by 

- -  

The data show that the normal-stress ratio decreases with increasing stable strati- 
fication as is predicted by the model. For unstable stratification, figure 1 ( e )  indicates 
that the present model gives (u:/u:)+ increasing with lRfl for both the boundary 
layer and the free flow. This is due to the fact that the length scale in unstable con- 
ditions does not depart far from proportionality with distance from the surface and 
the wall effect is not appreciably affected by the degree of stratification. 

The predicted variation of the r.m.s. vertical velocity fluctuations (normalized by 
the friction velocity) under unstable conditions is comptared with the measurements 
of Wyngaard et al. (1971) in figure 2. The correct trend is displayed by the predictions 
but they lie about 20 % below the measured values. The difference appears to be due 
mainly to too small values of the shear stress being measured in the Kansas study 
(the implied value of the von KQrmQn constant was only 0.35 compared with more 
usually reported values of about 0.41). Certainly most laboratory studies have found, 
in line with the present prediction, that under neutral conditions (q ) ) /u ,  is very close 
to unity. For strongly unstable conditions ( -x3/L > 2*0) ,  the calculations exhibit a 
*-power dependence which is substantially in agreement with the measured behaviour 
and the similarity hypothesis for free convection [equation (61 )]. 

t There are a number of possible reasons for Arya’s near-wall measurements exhibiting a 
different trend from those in the atmosphere. The data taken at 1 yo of the boundary-layer 
thickness may well be subject to viscous effects (the streamwise r.m.s. component very near a 
smooth wall displays marked peaking, a feature absent in the boundary layer on a rough wall; 
Pimenta, Moffat & Kays 1975). At the next position at  which data are reported ( 5 %  of the 
boundary-layer height) the shear stress studied appears to differ significantly from wall values; 
this suggests that the structure may be some way from local equilibrium. It is unfortunately 
not possible to identify from the reported values of (ug/u:) a the positions and velocities corre- 
sponding to each point. A further possible source of differences between the wind-tunnel and 
atmospheric boundary layers is that the thickness of the former was 40 yo of the tunnel width 
and thus almost certainly modified by the presence of the side walls of the test section. 

-- 

-- 
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FIGURE 3. (a )  Measured and predicted behaviour of the shear-stress correlation coefficient in 
stable flow. Atmospheric-boundary-layer data from Haugen et UI!. (1971). (b )  Measured and 
predicted behaviour of the shoar-stress correlation coefficient with increasing stability in a free 
shear flow. Data from Young (1975). Broken line denotes predictions for an energy production- 
to-dissipation ratio of 0.8. 
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FIGURE 4. (a )  Measured and predicted dependence on stability of the ratio of the turbulent 
exchange coefficients. Atmospheric-boundary-layer data from Businger et aE. (1971). Broken 
line denotes ' adjusted' predictions described in the text. ( 6 )  Measured and predicted behaviour 
of the exchange-coefficient ratio with increasing stability in a free shear flow. Data from Young 
( 1975). Broken line denotes predictions for an ecergy production-to-dissipation ratio of 0.8. 
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The final flow-field comparison in figures 3 (a)  and ( b )  shows the dependence of the 
shear-stress correlation coefficient on Richardson number for stable stratification. 
The correlation coefficients for the atmospheric boundary layer have been increased 
by 50 % to bring their level under near-neutral conditions more into line with iso- 
thermal laboratory studies.? The predictions support the observation made earlier 
that the correlation coefficient is relatively unaffected by buoyancy. The calculations 
do in fact display a slow decrease in R13 as Rf is increased, a variation which cannot 
be said to be displayed by experiment. The scatter in the data is so large, however, 
that the calculated variation is at least not inconsistent with the available measure- 
ments. The behaviour of this correlation coefficient for the free shear flow is virtually 
identical to that for the wall flow; this reflects the fact that in neutral flows R,, is 
virtually the same in both wall and free flows so the near-wall correction has an 
insignificant effect on this parameter. The apparent sensitivity to buoyancy is, how- 
ever, different because the data shown in figure 3 ( b )  extend to higher values of the 
Richardson number. The calculated variation shows a decay similar to, but somewhat 
steeper than, Young’s (1975) measurements; indeed R,, falls to  zero for Ri just greater 
than 0.5, which corresponds to a critical flux Richardson number of 0.25. It is un- 
likely that in experiments on such strongly stratified flows local equilibrium will be 
maintained: the energy-containing motions will tend to be damped under the action 
of gravity with passage downstream but it seems unlikely that there would be a 
sufficient development length for these effects to be transferred through the spectrum 
to the fine-scale motion. It seems likely, therefore, that the ratio of the generation to 
the dissipation rate will fall somewhat below unity under strongly stable conditions. 
To illustrate the possible significance of such an effect figure 3 ( b )  contains numerical 
results for a case where the total energy production-to-dissipation ratio is only 0.8, 
instead of unity. The governing equations, which are not presented here, are obtained 
by following precisely the analysis of $Q 2 and 3 with E replaced by 1*25(P+ G )  rather 
than by P + G. In  this case the general trend is the same as before though the collapse 
of the shear-stress correlation coefficient is deferred. 

Turning now to the properties of the temperature field, the ratio of the effective 
diffusivities of heat and momentum (the reciprocal of the turbulent Prandtl number) 
is shown in figures 4 (a)  and (b ) .  Under neutral conditions the data for the atmospheric 
boundary layer indicate a value of 0.74 for the turbulent Prandtl number compared 
with the usually reported value of about 0.93 (Bradshaw 1976, p. 246). The difference 
appears to be partly due to the measured shear-stress levels being too low, a feature 
on which we have commented above. Two lines representing predicted behaviour are 
shown in figure 4 (a):  that directly given by the present model and the curve that results 
when the model values are increased by 20 % to bring them into line with the experi- 
mental data under neutral conditions. The prediction thus adjusted reproduces 
extremely closely the variations recorded in the experiment, including the decrease 
in the diffusivity ratio in weakly unstable flow and the approach to an asymptotic 
level under very strongly unstable conditions. 

The overall agreement with experiment displayed by the present model under 
strongly stable conditions seems to confirm that gravity waves are not contributing 
significantly to measured ‘turbulence ’ signals under the conditions studied. If they 

t The fractional weighting was chosen as being a round number of about the correct magnitude. 
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FIGURE 5 .  (a)  Measured and predicted dependence on stability of the heat-flux ratio. Atmospheric- 
boundary-layer data from Wyngaard et aZ. (1971). ( 6 )  Measured and predicted behaviour of the 
heat,-flux ratio with increasing stability in a free shear flow. Data from Young (1975). Broken 
line denotes predictions for an energy production-to-dissipation ratio of 0.8. 

were, it is virtually certain that some properties of either the heat-flux or the stress 
field would be quite wrongly predicted by the present statistical approach. 

The predicted behaviour in the homogeneous free shear flow is similar to that for 
the atmospheric boundary layer for unstable flows but is quite different under stable 
stratification. The ratio of diffusivities falls from a value of 1-5 for a neutral flow to 
approximately 0.5 for a flux Richardson number of 0.25. Young’s (1975) data show 
a great deal of scatter but, like Webster’s (1964) earlier experiments, support the trend 
displayed by the present prediction. 

The ratio of horizontal to vertical heat flux is compared with the atmospheric data 
in figure 5 (a). While the predicted behaviour in strongly stable or unstable stratifica- 
tion agrees satisfactorily with measuremenbs, the measured strong peaking under 
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neutral and very weakly stratified conditions is not reproduced. This is the first and 
only structural parameter for which the model displays a significantly different trend 
from the measurements. The value of the near-wall heat-flux ratio in neutral con- 
ditions is the subject of considerable uncertainty, Most of the values obtained in the 
laboratory under closely controlled conditions lie between 2.0 and 3.0 compared with 
nearly 4.0 for the data of figure 5. The value of just over 2.0 produced by the present 
model is a consequence of tuning the constants C,, and C; to fit the extensive measure- 
ments by Pimenta et al. (1  975) on a uniformly roughened test plate. These data show 
little scatter and good internal consistency; overall we felt that they provided the 
best available set of thermal turbulence measurements in a boundary layer under 
neutral conditions. It does not seem possible to identify with certainty the cause of the 
different trend in the predicted and measured behaviour for 0 < x 3 / L  < 0.5. The 
particular choice of the length-scale dependence certainly affects the model and, in 
the course of optimizing the choice of length scale and coefficient in the present work, 
it was found that sometimes a mild diminution in - uI y/u3 y was predicted for 
x,/L > 0.1; these cases did not produce the best overall agreement, however. In  any 
event, because the measured heat-flux ratios for neutral conditions shown in figure 
5 ( w )  are so much larger than values obtained in the laboratory it is open to question 
whether one should attempt to  reproduce even the qualitative trend near x,/L = 0. 
In this region the level of temperature fluctuations is necessarily very small and the 
signal contamination by velocity fluctuations may become significant.? In a free shear 
flow, for which results are shown in figure 5 ( b ) ,  there is a steady decrease in the ratio 
of vertical to horizontal heat flux. The predictions follow the trend of Young’s (1975) 
measurements, though exhibiting a somewhat more rapid decrease. Again for illustra- 
tion, the behaviour for a production-to-dissipation ratio of 0.8 is shown; for this case 
the rate of diminution is reduced. 

-- 

7. Concluding remarks 
The present study has, we feel, established that the strikingly different behaviour 

observed in the atmospheric boundary layer and the stratified shear layer is due to the 
sensitivity of the fluctuating pressure field to the ratio of a typical eddy size to the 
height above the ground. Stable stratification reduces the eddy size at a given height 
and thus diminishes the tendency of the ground to transfer velocity fluctuations and 
heat fluxes from the vertical to the horizontal direction. 

The second-order model proposed in this study generally predicts the contrasting 
behaviour in the two kinds of flows with good accuracy. An exception is the strong 
peaking of the horizontal-to-vertical heat-flux ratio observed in the atmospheric 
boundary layer under nearly neutral conditions, a phenomenon that is not reproduced 
by the present closure. There are a number of simplifications in the model which may 
be responsible for the discrepancy, notably that the wall-effect function is the same for 
both the stresses and the heat fluxes. However, in view of the fact that, under neutral 
conditions, laboratory data generally exhibit much lower ratios of streamwise to 
normal heat fluxes than the atmospheric boundary layer, it  is not entirely certain 
that the discrepancy is due to shortcomings of the model. 

t In the paper reporting these measurements Wyngaard et al. (1971) have suggested that the 
nppnrent cusp near xa/L might reflect the effect of measuring heat fluxes in unsteady conditions. 
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